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(57) ABSTRACT

A system and method supporting efficient, scalable stateful
switchover of transport layer connections in a telecommuni-
cations network element. One method involves receiving, at a
network element comprising an active transport protocol pro-
cess coupled to a standby protocol process, a request to con-
figure a first transport layer connection maintained at the
active transport protocol process for stateful switchover;
receiving an event associated with the first transport layer
connection; creating a message containing replicated event
information based on the received event; sending the message
to the standby transport protocol process; and processing the
message at the standby transport protocol process, wherein
the standby transport protocol process replicates state infor-
mation for the first connection.
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HIGH AVAILABILITY TRANSPORT
PROTOCOL METHOD AND APPARATUS

BENEFIT CLAIM

This application claims the benefit as a continuation of
application Ser. No. 12/830,948, filed Jul. 6, 2010, whichis a
continuation of application Ser. No. 11/134,678, filed May
19, 2005, now U.S. Pat. No. 7,751,311, the entire contents of
which are hereby incorporated by reference as if fully set
forth herein for all purposes under 35 U.S.C. §120.

FIELD OF THE INVENTION

The present invention generally relates to providing high
availability or fault-tolerant transport layer connections in
telecommunication networks. The invention relates more
specifically to approaches for supporting reliable and effi-
cient switchover of Transport Connection Protocol (TCP)
connections in routers and switches without interfering with
network routing and switching operations.

BACKGROUND

The approaches described in this section could be pursued,
but are not necessarily approaches that have been previously
conceived or pursued. Therefore, unless otherwise indicated
herein, the approaches described in this section are not prior
art to the claims in this application and are not admitted to be
prior art by inclusion in this section.

Border Gateway Protocol (BGP) is a path vector routing
protocol for inter-Autonomous System routing. The function
of'a BGP-enabled network element (a BGP host or peer) is to
exchange network reachability information with other BGP-
enabled network elements. The most commonly imple-
mented version of BGP is BGP-4, which is defined in
RFC1771 (published by the Internet Engineering Task Force
(IETF) in March 1995).

To exchange routing information, two BGP hosts first
establish a peering session by exchanging BGP OPEN mes-
sages. The BGP hosts then exchange their full routing tables.
After this initial exchange, each BGP host sends to its BGP
peer or peers only incremental updates for new, modified, and
unavailable or withdrawn routes in one or more BGP
UPDATE messages. A route is defined as a unit of informa-
tion that pairs a network destination with the attributes of a
network path to that destination. The attributes of the network
path include, among other things, the network addresses (also
referred to as address prefixes or just prefixes) of the com-
puter systems along the path. In a BGP host, the routes are
stored in a Routing Information Base (RIB). Depending on
the particular software implementation of BGP, a RIB may be
represented by one or more routing tables. When more than
one routing table represents a RIB, the routing tables may be
logical subsets of information stored in the same physical
storage space, or the routing tables may be stored in physi-
cally separate storage spaces.

As networks grow more complex and the number of BGP
routes maintained by a particular element increases, the con-
sequences of the failure of a BGP host device, or the BGP
process that it hosts, become more severe. For example, in
some scenarios a BGP failure may require retransmission of
a large amount of route information and re-computation of a
large amount of network reachability information. Therefore,
vendors of network gear and their customers wish to deploy
BGP in a fault-tolerant manner.
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2

BGP commonly runs on and uses the Transmission Control
Protocol (TCP) as defined in RFC 793, which provides a
connection-oriented, reliable data delivery service for appli-
cations such as BGP. Having highly available, reliable TCP
connections that can be switched over in the face of failure is
a foundation requirement for providing BGP with high avail-
ability.

Highly reliable networks offer high availability by detect-
ing failures and handling the failures in a timely manner with
zero or minimal disruption of service. Redundant systems
that have at least one secondary processor are often used to
achieve high reliability. When the secondary processor is
synchronized to the primary processor, and can take over with
almost no visible interruption to peer devices, the secondary
processor is termed a “hot standby” and the switchover is
termed “stateful switchover” or SSO.

SSO can be implemented in a telecommunication network
with network elements that have dual route processors, each
of which can host separate but duplicate instances of various
software applications. One route processor is deemed Active
and the other is deemed Standby. When the processors are
operating in SSO mode, the active route processor automati-
cally replicates all messages that it receives or sends, for all
protocols or activities, and sends the replicated messages to
the standby route processor.

In some embodiments, the active route processor periodi-
cally sends a bulk copy of data representing a particular state
(a “checkpoint™) to the standby route processor. While repli-
cation and checkpointing enable the standby route processor
to achieve synchronization of state with the active route pro-
cessor, these approaches require considerable use of process-
ing resources and memory, and require extensive use of an
inter-processor communication mechanism. When a route
processor is managing a large number of BGP sessions and
TCP connections, the burden of continually operating in SSO
mode may become unacceptable.

As networks grow larger and more complex, network reli-
ability and throughput depends to a greater extent upon the
availability of software processes that implement BGP. For
example, when a BGP host becomes unavailable, many other
BGP peers may need to re-compute route information to
account for the unavailability. Other hosts may lose BGP
connectivity during the transition. Thus, present approaches
for upgrading BGP software to support new features in large
networks cause significant network churn. Network adminis-
trators are demanding a better solution that does not perturb
the network.

Moreover, BGP is merely one example of an application
for which high availability is desirable; there are many other
applications. BGP and other applications running on top of
transport-layer protocols, such as TCP, would benefit greatly
from a solution providing true SSO for the TCP connections,
achieved in a scalable manner.

Further, users and administrators expect any SSO support
for TCP to provide a solution that performs well and scales to
large networks that use existing and future platforms without
major hardware upgrades.

One approach for providing high-availability TCP involves
massive data checkpointing of send and receive windows and
related metadata for all established TCP connections. While
this approach does allow active and standby processors to
maintain identical TCP state information, it is a “brute-force”
approach that requires extensive CPU resources. Network
administrators desire to have a more efficient approach that is
readily scalable to large numbers of connections.
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BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
elements and in which:

FIG. 1A is a block diagram that illustrates an overview of
anetwork element that may be used to implement an embodi-
ment;

FIG. 1B is a block diagram showing example functional
elements in a TCP high availability process;

FIG. 2A is a flow diagram that illustrates a high level
overview of one embodiment of a method for providing high-
availability transport layer connections;

FIG. 2B is a block diagram showing the use of a peer
signaling layer for communicating events among active and
standby TCP layers;

FIG. 3, FIG. 4, and FIG. 5 are flow diagrams that illustrate
details of one embodiment of a method for providing high-
availability transport layer connections;

FIG. 6 is ablock diagram that illustrates a computer system
upon which an embodiment may be implemented.

DETAILED DESCRIPTION

A high availability transport protocol method and appara-
tus are described. In the following description, for the pur-
poses of explanation, numerous specific details are set forth in
order to provide a thorough understanding of the present
invention. [t will be apparent, however, to one skilled in the art
that the present invention may be practiced without these
specific details. In other instances, well-known structures and
devices are shown in block diagram form in order to avoid
unnecessarily obscuring the present invention.

Embodiments are described herein according to the fol-
lowing outline:

1.0 General Overview

2.0 Structural and Functional Overview

3.0 Example Implementation of High Availability Trans-

port Protocol Method and Apparatus
3.1 State Replication
3.2 Setting Up And Synchronizing New Connections
3.3 Processing Send Window Values
3.4 Initial Synchronization Of Standby Tcp Module
3.5 State Tracking And Verification
3.6 Post-Switchover Processing
3.7 Benefits Of Certain Embodiments
4.0 Implementation Mechanisms—Hardware Overview
5.0 Extensions and Alternatives

1.0 GENERAL OVERVIEW

The needs identified in the foregoing Background, and
other needs and objects that will become apparent for the
following description, are achieved in the present invention,
which comprises, in one aspect, a method comprising receiv-
ing, at a network element comprising an active transport
protocol process coupled to a standby protocol process, a
request to configure a first transport layer connection main-
tained at the active transport protocol process for stateful
switchover; receiving an event associated with the first trans-
port layer connection; creating a message containing repli-
cated event information based on the received event; sending
the message to the standby transport protocol process; and
processing the message at the standby transport protocol pro-
cess, and the standby transport protocol process replicates
state information for the first connection.
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According to one feature, the active transport protocol
process and the standby transport protocol processes imple-
ment transmission control protocol (TCP). In another feature,
the message is sent from the active transport protocol process
to the standby transport protocol process using a peer signal-
ing layer, and the message is not communicated to one or
more logically lower protocol layers.

In another feature, the event comprises a TCP SYN seg-
ment; the active transport protocol process completes estab-
lishment of the first connection without informing the
standby transport protocol process, creates a copy of a TCP
control block, places the TCP control block copy in the event
message; and the standby transport protocol process creates a
second connection that replicates the first transport layer con-
nection and uses the TCP control block copy.

Inyet another feature, the active transport protocol process
further performs one or more security checks on the TCP
SYN segment, and the active transport protocol process sends
the event message only if the TCP SYN segment passes the
one or more security checks. In still another feature, the first
transport protocol connection is configured not to perform
send window checkpointing, and the active transport protocol
process creates and sends, to the standby transport protocol
process, a TCP segment with a valid header, correct length,
and dummy data.

In still another feature, the method further comprises
receiving a request for state verification, testing whether one
or more state values maintained by the active transport pro-
tocol process for the first transport protocol connection match
one or more corresponding state values that are maintained by
the standby transport protocol process for a replica of the first
transport protocol connection, and performing a responsive
action when no match occurs.

In another feature, in response to a switchover, the standby
transport protocol process processes all pending events asso-
ciated with all active connections, resets all timer values
associated with the connections, and resets all option values
associated with the connections before becoming active.

In other aspects, the invention encompasses a computer
apparatus and a computer-readable medium configured to
carry out the foregoing steps.

2.0 STRUCTURAL AND FUNCTIONAL
OVERVIEW

FIG. 1A is a block diagram that illustrates an overview of
anetwork element that may be used to implement an embodi-
ment. A network element 100 comprises an active route pro-
cessor 102A and a standby route processor 102B arranged in
a redundant or fault-tolerant configuration. In one embodi-
ment, network element 100 is a dual-processor router or
switch that participates in a packet-switched network or inter-
network. Active route processor 102A hosts a TCP module
108A that runs or controls a TCP high-availability (HA)
process 106 A and a BGP application 104A. Standby route
processor 102B hosts a TCP module 108B, BGP application
104B, and TCP HA process 106B.

TCP modules 108A, 108B and TCP HA processes 106A,
106B provide transport control protocol functionality. BGP
application 104A, 104B provide border gateway protocol
functionality. In alternative embodiments, active route pro-
cessor 102A and standby route processor 102B may host
other protocols and applications. Thus, TCP modules 108A,
108B, TCP HA processes 106A, 106B, and BGP application
104 A, 104B are shown only as examples and not as require-
ments.
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An inter-process communication (IPC) service 110 is
coupled between active route processor 102A and standby
route processor 102B, and provides a means for the route
processors to exchange data and instructions.

In one embodiment, network element 100 is implemented
as one of the Cisco 10000 Series Routers, commercially
available from Cisco Systems, Inc. Alternatively, network
element could be a Cisco CRS-1 Carrier Routing System. The
arrangement of FIG. 1A represents just one possible context
for applying the approaches described herein.

The approaches herein provide an architecture comprising
multiple techniques to achieve SSO for TCP connections that
will perform and scale well on current and future router
platforms without requiring special hardware assistance.
Generally, the adaptive TCP SSO architecture proposed
herein implements a high availability TCP module that will
extract the events necessary for providing SSO functionality
for TCP connections based on system behavior and then
signal the events to a standby TCP module. The standby TCP
module uses the events to recreate state data that is identical
in form and function to the state data at the active TCP
module. Applications that use or run on TCP connections also
participate in certain respects. With this approach, a scalable,
efficient and useful TCP SSO support implementation is
made possible by providing an architecture that can adapt to
the needs of TCP applications, and can be tuned based on
application needs and strengths.

FIG. 1B is a block diagram showing example functional
elements in a TCP high availability process, such as TCP high
availability process 106A of FIG. 1A. In one embodiment,
TCP high availability process 106A comprises state replica-
tion logic 120, connection marking logic 122, new connec-
tion processing logic 124, send window checkpoint logic 125,
initial synchronization logic 126, post-switchover logic 128,
and peer signaling logic 130. The foregoing elements may be
implemented as one or more sequences of computer program
instructions, or other software elements, for implementing
the functions described herein. Specific logical functions are
described in succeeding sections.

FIG. 2A is a flow diagram that illustrates a high level
overview of one embodiment of a method for providing high-
availability transport layer connections. FIG. 2B is a block
diagram showing the use of a peer signaling layer for com-
municating events among active and standby TCP layers.
Referring first to FIG. 2A, in one embodiment the active TCP
module 108a of FIG. 1A first identifies an event associated
with supporting TCP stateful switchover. Events may include
receiving certain kinds of TCP segments, receiving informa-
tion relating to application behavior or system behavior, etc.

At step 204, the active TCP module creates a message
containing event information. The message created at step
204 comprises, for example, information that the standby
TCP module needs to replicate state information that is
equivalent to state maintained at the active TCP module.

At step 206, the message created at step 204 is sent to the
standby TCP module. At the standby TCP module 108B, the
event message is received at step 208. The standby TCP
module 108B then processes the event message to recreate
state information at the standby TCP module. The recreated
state information is equivalent to state information main-
tained by the active TCP module. However, the approach of
FIG. 2A does not require checkpointing all data that is actu-
ally carried in TCP segments that are received at the active
TCP module 108A as part of an established TCP connection.
Therefore, the present approach achieves far greater effi-
ciency and scalability than past approaches.
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In one embodiment, messages created at step 204 are sent
at step 206 from one transport layer module hosted by an
active route processor directly to a transport layer module
hosted by a standby route processor, without passing down
other stack layers. Referring now to FIG. 2B, when an imple-
mentation is structured according to the seven-layer Open
Systems Interconnect (OSI) model of network software, the
active TCP module 108A of FIG. 1 may reside conceptually
at the transport layer 212A and a TCP peer signaling layer
214A may be coupled to the transport layer. The TCP peer
signaling layer 214A establishes a messaging connection
directly to a counterpart peer signaling layer 214B associated
with a transport layer 212B of a standby processor. The active
TCP module 108A can send messages directly to a standby
TCP module 108B through the TCP peer signaling layers
214A, 214B without traversing lower layers such as network
layer 216 A (which may implement IP), data link layer 218A,
or physical layer 220A.

In the approach of FIG. 2A, TCP connection data as
received “on the wire” at the active TCP module 108 A serves
as a primary driver for generating state information in a TCP
state machine for a connection on the standby TCP module
108B. In an embodiment, all connection data is replicated at
the active TCP module 108 A, sent to the standby TCP module
108B, and processed by the TCP state machine of the standby
TCP module as if the data came from the wire directly to the
standby TCP module. This approach exploits the observation
that two TCP stacks that are RFC compliant must produce the
same end state given the same packet inputs. The peer-to-peer
signaling mechanism transfers packets or events into the TCP
state machine on the standby TCP module without involving
lower layers.

Further, in one embodiment, higher-layer TCP applica-
tions hosted at the standby route processor can read packets as
if the packets are arriving on the connection from the wire.
Each TCP connection represented on the standby TCP mod-
ule is maintained in a read-only mode, i.e., applications can-
not write packets into the connection or send TCP segments
using the connection.

While certain embodiments are described herein in the
context of TCP, the broad approaches herein apply to other
transport layer protocols, such as Stream Control Transmis-
sion Protocol (SCTP). Certain embodiments are useful in the
context of performing non-stop routing processes. Such pro-
cesses are described, for example, in co-pending application
Ser. No. 10/808,040, filed Mar. 24, 2004, entitled “Routing
system and method for transparently recovering routing
states after a failover or during a software upgrade,” of Chan-
drashekhar Appanna et al.

The approaches provided herein can support failover of
passive open connections, which are TCP connections origi-
nating from another BGP peer. The approaches herein also
support failover of active open connections, which are TCP
connections originating from a particular BGP peer that
implements the approaches herein. The approaches herein
can handle asymmetric startup, which occurs when a second-
ary processor initiates operation or is added after a primary
process initializes and establishes TCP connections with a
peer.

3.0 EXAMPLE IMPLEMENTATION OF HIGH
AVAILABILITY TRANSPORT PROTOCOL
METHOD AND APPARATUS

An example implementation of a high availability transport
protocol method is now described with reference to FIG. 3,
FIG. 4, and FIG. 5, which are flow diagrams that illustrate
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details of one embodiment of a method for providing high-
availability transport layer connections.

3.1 State Replication

TCP is a stateful protocol that provides reliable datagram
delivery, flow control, and congestion control for higher-
order applications. To provide these services, a TCP imple-
mentation maintains state data that includes variables, such as
window sizes, round trip time, etc.; a re-transmission queue
containing copies of segments that have been sent but not yet
acknowledged; and timers. A successful switchover to a sec-
ondary processor of TCP requires timely synchronization of
such state data to the secondary processor.

Applications that run on transport layer connections may
initiate the creation of replicated connection state information
in the following manner. Referring to FIG. 3, at step 302, an
application determines that a specified connection should
have stateful switchover (SSO) treatment. At step 304, the
application initiates a function call to an API exposed by a
TCP high availability process, such as TCP high availability
process 106A, and requests TCP to configure a particular
connection for SSO. In the API call the application may
provide information identifying a connection, such as a five-
tuple of flow parameters. In response, the TCP high availabil-
ity process configures the requested connection for SSO treat-
ment. Such configuration may include setting a property
value in a data structure that stores connection properties for
a particular TCP connection, marking the connection in a
table, storing flow parameters in a table having entries only
for SSO connections, etc. An application may also maintain
information at the application layer indicating that particular
underlying connections are SSO configured.

At step 310, the active TCP module receives a TCP seg-
ment for a particular connection. At step 312, the active TCP
module determines whether the particular connection is con-
figured for SSO. Step 312 may be implemented as a filter in
the packet input path, such that only packets for SSO connec-
tions are replicated reliably to the standby TCP module.

If the particular connection is not SSO configured, then
normal TCP processing is performed at step 314, and the
standby TCP module never becomes involved. If SSO con-
figuration is indicated, then at step 316, a copy of the packet
is created, and at step 318 a message containing the packet
copy is sent to the standby TCP module. The TCP peer sig-
naling layer 214A, 214B may be used for such messaging.
Upon receiving the message, the standby TCP module pro-
cesses the packet using its TCP state machine, resulting in
creating equivalent state at the standby TCP module.

In an embodiment, messages sent on peer signaling layer
214A, 214B are tagged with message type values to differen-
tiate messages containing segments received for an existing
SSO connection and for a new connection. For example, the
message type “TCP_HA_PKT” may designate a TCP packet
or segment received for an existing SSO connection, and the
message type “TCP_HA_NEW_CONN” may designate a
segment associated with a new connection, for which ISN
synchronization is required. Other messages to verify, clear,
query, and support asymmetric startup may be defined.

Thus, in the approach of FIG. 3, an application such as
BGP can specify whether a connection is highly available or
not. Only for connections that are marked highly available,
packets are cloned and sent to the standby TCP module.
Replication and communication of the packets occurs at the
transport protocol level. This approach ensures that the
inbound packet runs through the standby state machine and is
synchronized with the active TCP module state machine.

The approach of FIG. 3 represents an improvement over
brute-force data checkpointing approaches, because TCP
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state changes for every processed packet, and checkpointing
each and every state change may require excessive use of
inter-process communication (IPC) resources. Further, with
checkpointing approaches, synchronization becomes diffi-
cult for highly different or divergent versions of the TCP
software. Moreover, a checkpointing approach cannot result
in modifying all local variables that are maintained internally
by the standby TCP module.

State replication logic 120 of FIG. 1B can implement the
process of FIG. 3 as described above.

3.2 Setting Up and Synchronizing New Connections

According to one embodiment, special processing is per-
formed to set up and synchronize the standby TCP module
when the active TCP module receives segments associated
with establishing one or more new TCP connections. In par-
ticular, special processing is performed to result in synchro-
nization of TCP initial sequence number (ISN) values at both
the active TCP module and standby TCP module.

To provide such synchronization, peer-peer packet repli-
cation cannot be performed without considering the contents
of'the packets. A TCP peer independently selects the ISN for
a connection. Therefore, if the active TCP module simply
sends the standby TCP module every SYN packet that is
received from a peer, the active TCP module and standby TCP
module will select diftferent ISN values. In such an approach,
a switchover to the standby TCP module would result in
non-recoverable loss of synchronization between the standby
TCP module and the peer.

Referring now to FIG. 4, at step 402, the active TCP mod-
ule receives a TCP segment for a particular connection. At
step 404, the active TCP module determines whether the
particular connection is configured for stateful switchover. If
not, then in step 406 normal TCP processing is performed.

If the particular connection is configured for SSO, then at
step 408, the active TCP module determines whether it has
received a SYN segment on the particular connection.
According to RFC 793, which defines TCP,a SYN segment is
associated with initiating a new connection. Ifa SYN segment
was not received, then the active TCP module performs steps
410 to step 414. At step 410, the packet containing the seg-
ment is copied. At step 412, the packet copy is encapsulated in
a TCP peer-to-peer signaling message, and sent to the standby
TCP module. The standby TCP module processes the packet
as if it received the packet over the wire in a real connection,
thereby duplicating state information held by the active TCP
module.

Ifthe active TCP module has received a SYN segment, then
steps 416 to 426 are performed. At step 416, the active TCP
module completes a conventional three-way handshake mes-
sage exchange with the peer TCP process, without informing
the standby TCP module, and without replicating packets and
segments involved in the handshake or sending such packets
or segments to the standby TCP module. Thus, at step 416 a
new connection may reach the ESTABLISHED state defined
in RFC 793 without involvement of the standby TCP module
and without replication of state at the standby TCP module.

Optionally, at step 420, one or more security checks may be
performed. For example, the security checks may test for the
presence of SYN flood attacks. If such an attack is identified,
it may be suppressed and remaining steps may be skipped
without informing the standby TCP module.

At step 418, the active TCP module creates a copy of the
TCP control block (TCB) that the active TCP module has
created and is maintaining for the new connection resulting
from completing the handshake at step 416. The TCB is
packaged in an event message.
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At step 422, the current TCP connection is frozen at the
active TCP module. Freezing a connection may involve mark-
ing the connection as temporarily unavailable at the active
TCP module. Freezing a connection prevents the TCP state
machine of the active TCP module from changing state while
the process of FIG. 4 is transferring the TCB for the connec-
tion to the standby TCP module, so that the TCB at the active
TCP module and a copy received at the standby TCP module
reflect the same state.

At step 424, the active TCP module sends the TCB copy to
the standby TCP module. At step 426, the standby TCP mod-
ule creates a duplicate or clone connection based on the
received TCB. After performing step 426, the standby TCP
module has created a connection and associated data structure
equivalent to the new connection at the active TCP module.
The active TCP module then can unfreeze the connection and
continue processing segments associated with the connec-
tion. The techniques for state replication described above for
FIG. 3 are then used to maintain equivalent state at the active
TCP module and standby TCP module.

Thus, in the approach of FIG. 4, whenever a new connec-
tion is established, only the active TCP module selects an ISN
value, and the active TCP module then informs the standby
TCP module about the selected ISN by providing a replica of
the initial TCP control block for the connection. During the
transfer the TCP connection is frozen, to prevent the active
TCP module from performing any further changes in state
data. The standby TCP module does not generate the ISN, and
after switchover, the standby TCP module uses the ISN con-
tained in a previous message from the active TCP module for
processing subsequent segments that are received from the
peer.

In one embodiment, only connections that pass one or more
security checks are transferred to the standby TCP module.

New connection processing logic 124 can implement the
processes of FIG. 4 as described above.

3.3 Processing Send Window Values

The approach herein allows an application to specify
whether TCP send window values should be periodically
checkpointed to the standby TCP module. Many applications
can do not require send window checkpointing. For these
applications, in the approach herein, only information indi-
cating an event, such as reception of a packet, is passed from
the active TCP module to the standby TCP module.

Referring now to FIG. 5, after either step 316 of FIG. 3 or
step 416 of FIG. 4, a test is performed to determine whether
the current connection is configured for checkpointing send
window values, as shown by step 502. If so, then at step 508,
the active TCP module creates an exact copy of a received
TCP segment including actual data as received from the peer.
At step 506, the TCP segment copy is sent to the standby TCP
module. The standby TCP module passes the received seg-
ment copy through its state machine, resulting in creating
equivalent send window values and state. This alternative is
appropriate only if enough IPC bandwidth is available for
transmitting all the data.

Alternatively, if send window checkpointing is not config-
ured, then at step 504 the active TCP module creates a TCP
segment copy having a valid, replicated header and correct
segment length based on the data included in the original
segment, but containing dummy data. The segment is sent to
the standby TCP module at step 506.

The standby TCP module passes the received segment
copy through its state machine, resulting in creating equiva-
lent send window values and state, without data or state
checkpointing. Other techniques for processing dummy data
are described in co-pending application Ser. No. 10/948,732,
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filed Sep. 22, 2004, entitled Cooperative TCP/BGP Window
Management For Stateful Switchover, of Chandrashekhar
Appanna et al. With this approach, applications can select
whether to implement send window checkpointing. Thus, the
system architecture and methods provided herein are adaptive
to the needs of applications.

Applications are expected to be able to fill any holes in the
TCP send window after a switchover if and only if there is
need for a retransmission. Further, in one embodiment, the
active TCP module does not fragment application protocol
data units (PDUs), which ensures that send windows will
synchronize after switchover. In an embodiment, multiple
messages may be grouped and Nagle’s algorithm may be
implemented, but without fragmentation.

Send window checkpoint logic 125 of FIG. 1B can imple-
ment the functions described above.

3.4 Initial Synchronization of Standby TCP Module

In one embodiment, special processing steps are per-
formed when a standby TCP module initiates operation. For
example, the standby TCP module contacts the active TCP
module using TCP peer signaling layers 214B, 214A to
request and receive all state data for all SSO-enabled connec-
tions that are then currently maintained on the active TCP
module. As described above, applications running on TCP
specify when certain TCP connections are SSO enabled. Fur-
ther, the active TCP module triggers such applications to
perform follow-up processing for active connections when
the standby TCP module initiates operation. For example, the
active TCP module may inform a BGP application by invok-
ing callback functions to indicate that the TCP processing
involved in synchronization for a particular TCP connection
or TCB is complete.

In one embodiment, initial synchronization logic 126
enables applications to group and optimize the order in which
SSO is enabled on TCP connections. No particular order is
required, and an asynchronous event can be used for enabling
SSO.

Initial synchronization logic 126 of FIG. 1B can implement
the functions described above.

3.5 State Tracking and Verification

Some applications can benefit from mechanisms for
retrieving current state information for the purpose of track-
ing and verifying states of a TCP state machine, or for retriev-
ing certain data values that the TCP modules use internally.
Such verification also provides a way to determine whether
communication across the peer-to-peer signaling layer is reli-
able—that is, to determine whether the standby TCP module
is receiving correct data from the active TCP module.

In one embodiment, TCP high availability process 106 A
provides mechanisms for applications seeking real-time state
verification. For example, in one embodiment, state replica-
tion logic 120 includes instructions for periodically checking
that the states at the active TCP module and standby TCP
module are identical. As one example, the values of TCP state
variables such as sndwnd, snduna, rcvnxt, rcvwnd are com-
pared, and an error is thrown if the values are not identical.
Alternatively, an auto-recovery process can be initiated; thus,
detecting that endpoints of a connection are out of synchro-
nization can trigger recovery. Further, timer values may be
compared within a tolerable skew amount. Application-spe-
cific values also may be checked.

In one embodiment, the interval during which such checks
are performed is programmable. For example, an interval
configuration value may specify that the foregoing state veri-
fication checks are performed after a specified number of
packets, where the specified number of packets is chosen by
the application. In one embodiment, verification checking is
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not enabled by default, but an application can enable verifi-
cation checking on a per connection basis. This approach
provides logic useful for debugging and fault recovery.

In still another embodiment, TCP high availability process
106A provides an API with a function that enables an appli-
cation, such as BGP, to determine the sizes of any dummy
packets that are in the send queue of the standby TCP module.
With this information, the BGP application can generate
packets of the same size and provide them to TCP for trans-
mission. The standby TCP module then recreates the send
queue using the provided packets. This approach ensures that
if a receiving peer has any logical holes in its receive window,
the window can be filled without problems.

3.6 Post-Switchover Processing

“Switchover” refers to a transfer of primary TCP segment
processing control from the active TCP module to the standby
TCP module. In one embodiment, after a switchover, to
ensure ordered processing of TCP segments, the new active
TCP module processes all pending events before actually
becoming active and able to accept new segments. Pending
events may include, for example, pending input packets that
were received at the former active TCP module, but not rep-
licated and sent to the former standby TCP module, at the time
that the switchover occurred.

Further, in an embodiment, timers that are conventionally
maintained in TCP implementations, such as the retransmis-
sion timer, give up timer, delayed ACK timer, etc., are reset to
default values. This approach is based on the insight that
corresponding timers at the active TCP module and the
standby TCP module may inevitably lose synchronization
due to differences in the accuracy of the clocks of the different
CPUs that host the modules, but that TCP peers will adapt to
changes if such values are reset. The only impact of restoring
the default values is to extend the occurrence of some event by
milliseconds, while not affecting long term average process-
ing time.

In another embodiment, values for certain TCP options are
cleared. For example, the SACK feature maintains state such
as SACK blocks. However, because such features are optimi-
zation options for TCP, the information can be cleared at
switchover without serious consequences. For example, the
result of clearing SACK blocks is to cause the new active TCP
module to drop SACK blocks for the few packets that were
being processed; thereafter, SACK processing restarts for
new packets. This approach also ensures that the standby TCP
module can properly interface with the BGP peer when the
peers have different software versions or operating system
versions.

The foregoing features allow for active TCP module to
eliminate a significant amount of checkpointing, without
detectable harm over a period of more than a few packets.

3.7 Benefits of Certain Embodiments

Through these approaches, an embodiment uses intelligent
techniques at the TCP level to achieve transparent failover of
TCP connections. These approaches provide a foundation for
supporting TCP applications, such as BGP, with high avail-
ability. The approaches avoid brute force checkpointing, and
use intelligent techniques that are applied at the TCP level.
The peer-to-peer signaling layer provides faster communica-
tion of replicated state data, and enables an implementation to
re-use the IP header and the datalink layer header of a packet.
As aresult, efficient packet cloning is provided. In contrast,
other approaches employ excessive checkpointing for both
send and receive state machine values, these approaches are
difficult to scale, and they require sophisticated hardware
assistance.
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4.0 IMPLEMENTATION
MECHANISMS—HARDWARE OVERVIEW

FIG. 6 is a block diagram that illustrates a computer system
600 upon which an embodiment of the invention may be
implemented. The preferred embodiment is implemented
using one or more computer programs running on a network
element such as arouter device. Thus, in this embodiment, the
computer system 600 is a router.

Computer system 600 includes a bus 602 or other commu-
nication mechanism for communicating information, and a
processor 604 coupled with bus 602 for processing informa-
tion. Computer system 600 also includes a main memory 606,
such as a random access memory (RAM), flash memory, or
other dynamic storage device, coupled to bus 602 for storing
information and instructions to be executed by processor 604.
Main memory 606 also may be used for storing temporary
variables or other intermediate information during execution
of instructions to be executed by processor 604. Computer
system 600 further includes a read only memory (ROM) 608
or other static storage device coupled to bus 602 for storing
static information and instructions for processor 604. A stor-
age device 610, such as a magnetic disk, flash memory or
optical disk, is provided and coupled to bus 602 for storing
information and instructions.

A communication interface 618 may be coupled to bus 602
for communicating information and command selections to
processor 604. Interface 618 is a conventional serial interface
such as an RS-232 or RS-422 interface. An external terminal
612 or other computer system connects to the computer sys-
tem 600 and provides commands to it using the interface 614.
Firmware or software running in the computer system 600
provides a terminal interface or character-based command
interface so that external commands can be given to the com-
puter system.

A switching system 616 is coupled to bus 602 and has an
input interface 614 and an output interface 619 to one or more
external network elements. The external network elements
may include a local network 622 coupled to one or more hosts
624, or a global network such as Internet 628 having one or
more servers 630. The switching system 616 switches infor-
mation traffic arriving on input interface 614 to output inter-
face 619 according to pre-determined protocols and conven-
tions that are well known. For example, switching system
616, in cooperation with processor 604, can determine a
destination of a packet of data arriving on input interface 614
and send it to the correct destination using output interface
619. The destinations may include host 624, server 630, other
end stations, or other routing and switching devices in local
network 622 or Internet 628.

The invention is related to the use of computer system 600
for upgrading network protocol software. According to one
embodiment of the invention, upgrading network protocol
software is provided by computer system 600 in response to
processor 604 executing one or more sequences of one or
more instructions contained in main memory 606. Such
instructions may be read into main memory 606 from another
computer-readable medium, such as storage device 610.
Execution of the sequences of instructions contained in main
memory 606 causes processor 604 to perform the process
steps described herein. One or more processors in a multi-
processing arrangement may also be employed to execute the
sequences of instructions contained in main memory 606. In
alternative embodiments, hard-wired circuitry may beused in
place of or in combination with software instructions to
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implement the invention. Thus, embodiments of the invention
are not limited to any specific combination of hardware cir-
cuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 604 for execution. Such a medium may take
many forms, including but not limited to, non-volatile media,
volatile media, and transmission media. Non-volatile media
includes, for example, optical or magnetic disks, such as
storage device 610. Volatile media includes dynamic
memory, such as main memory 606. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise bus 602. Transmission media can
also take the form of acoustic or light waves, such as those
generated during radio wave and infrared data communica-
tions.

Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or car-
tridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 604 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 600 can receive the data on the telephone line and use
an infrared transmitter to convert the data to an infrared sig-
nal. An infrared detector coupled to bus 602 can receive the
data carried in the infrared signal and place the data on bus
602. Bus 602 carries the data to main memory 606, from
which processor 604 retrieves and executes the instructions.
The instructions received by main memory 606 may option-
ally be stored on storage device 610 either before or after
execution by processor 604.

Communication interface 618 also provides a two-way
data communication coupling to a network link 620 that is
connected to a local network 622. For example, communica-
tion interface 618 may be an integrated services digital net-
work (ISDN) card or a modem to provide a data communi-
cation connection to a corresponding type of telephone line.
As another example, communication interface 618 may be a
local area network (LAN) card to provide a data communi-
cation connection to a compatible LAN. Wireless links may
also be implemented. In any such implementation, commu-
nication interface 618 sends and receives electrical, electro-
magnetic or optical signals that carry digital data streams
representing various types of information.

Network link 620 typically provides data communication
through one or more networks to other data devices. For
example, network link 620 may provide a connection through
local network 622 to a host computer 624 or to data equip-
ment operated by an Internet Service Provider (ISP) 626. ISP
626 in turn provides data communication services through the
worldwide packet data communication network now com-
monly referred to as the “Internet” 628. Local network 622
and Internet 628 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 620 and
through communication interface 618, which carry the digital
data to and from computer system 600, are exemplary forms
of carrier waves transporting the information.
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Computer system 600 can send messages and receive data,
including program code, through the network(s), network
link 620 and communication interface 618. In the Internet
example, a server 630 might transmit a requested code for an
application program through Internet 628, ISP 626, local
network 622 and communication interface 618. In accor-
dance with the invention, one such downloaded application
provides for upgrading network protocol software as
described herein.

Processor 604 may execute the received code as it is
received, and/or stored in storage device 610, or other non-
volatile storage for later execution. In this manner, computer
system 600 may obtain application code in the form of a
carrier wave.

5.0 EXTENSIONS AND ALTERNATIVES

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense.

What is claimed is:
1. A network element comprising:
an active route processor coupled to a computer-readable
storage medium storing one or more first sequences of
instructions comprising active high availability process
logic and active transport communications logic;
a standby route processor coupled to a second computer-
readable storage medium storing one or more second
sequences of instructions comprising standby high
availability process logic and standby transport commu-
nications logic;
an inter-process communication (IPC) service configured
to facilitate communications between the active route
processor and the standby route processor;
wherein the first sequences of instructions, when executed,
cause the active route processor to perform: receiving an
event associated with a transport layer connection; in
response to determining that a request to configure the
transport layer connection for a stateful switchover was
received at the network element, creating a message
containing replicated event information based on the
received event, and sending the message to the standby
route processor without checkpointing data carried via
the transport layer connection;
wherein the message includes values of variables, window
sizes and timers of the transport layer connection;
wherein the second sequences of instructions, when
executed, cause the standby route processor to perform:
receiving the message from the active route processor;
processing the message to recreate a state for the trans-
port layer connection at the standby route processor
based on the replicated event information included in
the message and not based upon the data carried via
the transport layer connection;

based on the replicated event information included in the
message, recreating at the standby route processor the
state for the transport layer connection that is equiva-
lent to state information maintained by the active
route processor.

2. The network element of claim 1, wherein the active route

processor and the standby route processor implement trans-
mission control protocol (TCP) processes.
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3. The network element of claim 2, wherein the network
element hosts active and standby Border Gateway Protocol
(BGP) processes logically on a top of the respective TCP
processes.
4. The network element of claim 3, wherein the event
comprises a TCP SYN segment;
wherein the first sequences of instructions, when executed,
cause the active route processor to perform: completing,
by the active route processor, establishing the transport
layer connection without informing the standby route
processor, creating a copy of a TCP control block, plac-
ing the copy of the TCP control block in the message;
creating an additional connection that replicates the
transport layer connection and uses a TCP control block
copy.
5. The network element of claim 4, wherein the first
sequences of instructions, when executed, cause the active
route processor to perform: receiving a state verification
request for a state verification; testing whether one or more
state values maintained by the active route processor for the
transport layer connection match one or more corresponding
state values that are maintained by the standby route proces-
sor for a replica of the transport layer connection; performing
a responsive action when no match is found.
6. The network element of claim 1, wherein the first
sequences of instructions, when executed, cause the active
route processor to perform: in response to the stateful
switchover, the active route processor processing all pending
events associated with all active connections; resetting all
timer values associated with the active connections; and
resetting all option values associated with the active connec-
tions.
7. The network element of claim 1, wherein the first
sequences of instructions, when executed, cause the active
route processor to perform: in response to determining that
the request to configure the transport layer connection for the
stateful switchover was received, creating an exact copy of a
segment that includes data for the event, and sending the exact
copy of the segment to the standby route processor.
8. A method comprising:
receiving, by an active route processor of a network ele-
ment, an event associated with a transport layer connec-
tion; in response to determining that a request to config-
ure the transport layer connection for a stateful
switchover was received at the network element, creat-
ing a message containing replicated event information
based on the received event, and sending the message to
the standby route processor without checkpointing data
carried via the transport layer connection;
wherein the message includes values of variables, window
sizes and timers of the transport layer connection;

receiving, by a standby route processor of the network
element, the message from the active route processor;
processing the message to recreate a state for the trans-
port layer connection at the standby route processor
based on thereplicated event information included in the
message and not based upon the data carried via the
transport layer connection; based on the replicated event
information included in the message, recreating at the
standby route processor the state for the transport layer
connection that is equivalent to state information main-
tained by the active route processor.

9. The method of claim 8, wherein the active route proces-
sor and the standby route processor implement transmission
control protocol (TCP) processes.
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10. The method of claim 9, wherein the network element
hosts active and standby Border Gateway Protocol (BGP)
processes logically on a top of the respective TCP processes.
11. The method of claim 10, wherein the event comprises a
TCP SYN segment;
the method comprising: completing, by the active route
processor, establishing the transport layer connection
without informing the standby route processor; creating
a copy of a TCP control block; placing the copy of the
TCP control block in the message;

wherein the active route processor creates an additional
connection that replicates the transport layer connection
and uses a TCP control block copy.

12. The method of claim 11, comprising:

receiving a state verification request for a state verification;

testing whether one or more state values maintained by the

active route processor for the transport layer connection
match one or more corresponding state values that are
maintained by the standby route processor for a replica
of the transport layer connection;

performing a responsive action when no match is found.

13. The method of claim 8, comprising: in response to the
stateful switchover, the active route processor processing all
pending events associated with all active connections; reset-
ting all timer values associated with the active connections;
and resetting all option values associated with the active
connections.

14. The method of claim 8, comprising: in response to
determining that the request to configure the transport layer
connection for the stateful switchover was received, creating
an exact copy of a segment that includes data for the event;
sending the exact copy of the segment to the standby route
processor.

15. A non-transitory computer-readable storage medium
storing one or more sequences of instructions which, when
executed by one or more processors, cause performance of:

receiving, by an active route processor of a network ele-

ment, an event associated with a transport layer connec-
tion;
in response to determining that a request to configure the
transport layer connection for a stateful switchover was
received at the network element, creating, by the active
route processor, a message containing replicated event
information based on the received event, and sending the
message to a standby route processor without check-
pointing data carried via the transport layer connection;

wherein the message includes values of variables, window
sizes and timers of the transport layer connection;

receiving, by the standby route processor of the network
element, the message from the active route processor;

processing, by the standby route processor, the message to
recreate a state for the transport layer connection at the
standby route processor based on the replicated event
information included in the message and not based upon
the data carried via the transport layer connection; based
on the replicated event information included in the mes-
sage, recreating at the standby route processor the state
for the transport layer connection that is equivalent to
state information maintained by the active route proces-
SOr.

16. The non-transitory computer-readable storage medium
of claim 15, wherein the active route processor and the
standby route processor implement transmission control pro-
tocol (TCP) processes.

17. The non-transitory computer-readable storage medium
of claim 16, wherein the network element hosts active and



US 9,106,525 B2

17

standby Border Gateway Protocol (BGP) processes logically
on a top of the respective TCP processes.

18. The non-transitory computer-readable storage medium
of claim 17, wherein the event comprises a TCP SYN seg-
ment; wherein the non-transitory computer-readable storage
medium stores additional sequences instructions which,
when executed, cause the active route processor to perform:
completing, by the active route processor, establishing the
transport layer connection without informing the standby
route processor; creating a copy of a TCP control block;
placing the copy of the TCP control block in the message;
creating an additional connection that replicates the transport
layer connection and uses a TCP control block copy.

19. The non-transitory computer-readable storage medium
of claim 15, wherein the non-transitory computer-readable
storage medium stores additional sequences of instructions
which, when executed, cause the active route processor to
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perform: receiving a state verification request for a state veri-
fication; testing whether one or more state values maintained
by the active route processor for the transport layer connec-
tion match one or more corresponding state values that are
maintained by the standby route processor for a replica of the
transport layer connection; performing a responsive action
when no match is found.

20. The non-transitory computer-readable storage medium
of claim 15, wherein the non-transitory computer-readable
storage medium stores additional sequences of instructions
which, when executed, cause the active route processor to
perform: in response to the stateful switchover, the active
route processor processing all pending events associated with
all active connections; resetting all timer values associated
with the active connections; resetting all option values asso-
ciated with the active connections.
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